Forces Study Guide/Homework

An object accelerates when either the \qquad and/or \qquad of the velocity change.

Newton's $2^{\text {nd }}$ Law states that the net force acting on an object equals its mass times its acceleration. Fnet=m a. Force is measured in Newtons, mass in kilograms, and acceleration in $\mathbf{m} / \mathbf{s} / \mathbf{s}$ ([meters per second] per second)
$\mathbf{a}=$
\qquad

$$
2.0 \mathrm{~kg} \longrightarrow \mathrm{~F}=40 \mathrm{~N}
$$

$\mathbf{a}=$
\qquad

$\mathbf{a}=0.0 \quad \mathbf{f}=$ \qquad

$a=15.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
$\mathrm{f}=$ \qquad

Typically, the vertical pressure gradient force is balanced out by the force of
\qquad —.

The pressure gradient force is directed from \qquad to \qquad Pressure.
a. High, high
b. high, low
c. low, low
d. low, high

For a given wind speed, the coriolis force is Larger/Smaller at high latitudes compared to low latitudes.

For a given latitude the coriolis force is larger/smaller for high wind speeds compared to low wind speeds.

The coriolis force is always zero at the \qquad
For a given wind speed the coriolis force is maximum at
a. The poles
b. the equator
c. 45 degrees Latitude

If the rotational speed of the earth were to decrease the coriolis force would Decrease/Increase.

The coriolis force on an object is zero when (circle all that apply)
a. its speed is zero
b. it is at the poles
c. it is at the equator
d. the planet is not rotating

Rank each from smallest to largest coriolis force. Smallest \qquad Largest
a. speed $30 \mathrm{mi} / \mathrm{hr}$ at $35^{\circ} \mathrm{N}$
b. speed $10 \mathrm{mi} / \mathrm{hr}$ at $40^{\circ} \mathrm{N}$
c. speed $20 \mathrm{mi} / \mathrm{hr}$ at $40^{\circ} \mathrm{N}$
d. speed $20 \mathrm{mi} / \mathrm{hr}$ at $5^{\circ} \mathrm{N}$

The coriolis force deflects moving objects to the \qquad in the Northern
Hemisphere and to the \qquad in the Southern Hemisphere.

When the wind speed is $40 \mathrm{mi} / \mathrm{hr}$ at a particular location the coriolis force just balances the pressure gradient force. What is the resulting acceleration of the wind?

When air flows in a circular path the net force on the air is directed
e. Zero
f. Inward
g. Outward
h. Forward
i. backward

What is the direction of the friction force if the wind is blowing $20 \mathrm{mi} / \mathrm{hr}$ towards the NE
a. SE
b. SW
c. NW

NE
Friction always acts \qquad relative to wind velocity.

Friction tends to make the wind blow faster/Slower .
Friction tends to indirectly increase/decrease the coriolis force.

The friction force indirectly tends to make the wind blow in the direction tilted towards / away from the pressure gradient force.

For the Figure below does the wind flow pattern match circulation for a NH Low, NH High, SH Low, or SH High?

Forces Study Guide/Homework

An object accelerates when either the \qquad Speed \qquad and/or \qquad direction \qquad of the velocity change.

Newton's $2^{\text {nd }}$ Law states that the net force acting on an object equals its mass times its acceleration. Fnet=m a. Force is measured in Newtons, mass in kilograms, and acceleration in $\mathbf{m} / \mathbf{s} / \mathbf{s}$ ([meters per second] per second)

\qquad

Typically, the vertical pressure gradient force is balanced out by the force of \qquad gravity (this is hydrostatic balance) \qquad .

The pressure gradient force is directed from \qquad to \qquad Pressure.
a. High, high
b. high, low
c. low, low
d. low, high

For a given wind speed, the coriolis force is Larger/Smaller at high latitudes compared to low latitudes.

For a given latitude the coriolis force is larger/smaller for high wind speeds compared to low wind speeds.

The coriolis force is always zero at the \qquad Equator \qquad
For a given wind speed the coriolis force is maximum at \qquad
a. The poles
b. the equator
c. 45 degrees Latitude

If the rotational speed of the earth were to decrease the coriolis force would Decrease/Increase.

The coriolis force on an object is zero when (circle all that apply)
j. its speed is zero
k. it is at the poles
l. it is at the equator
m . the planet is not rotating
Rank each from smallest to largest coriolis force. Smallest __d \qquad _b \qquad
\qquad c
_a \qquad Largest
e. speed $30 \mathrm{mi} / \mathrm{hr}$ at $35^{\circ} \mathrm{N}$
f. speed $10 \mathrm{mi} / \mathrm{hr}$ at $40^{\circ} \mathrm{N}$
g. speed $20 \mathrm{mi} / \mathrm{hr}$ at $40^{\circ} \mathrm{N}$
h. speed $20 \mathrm{mi} / \mathrm{hr}$ at $5^{\circ} \mathrm{N}$

The coriolis force deflects moving objects to the \qquad Right \qquad in the Northern Hemisphere and to the \qquad Left \qquad in the Southern Hemisphere.

When the wind speed is $40 \mathrm{mi} / \mathrm{hr}$ at a particular location the coriolis force just balances the pressure gradient force. What is the resulting acceleration of the wind? zero

When air flows in a circular path the net force on the air is directed
n. Zero
o. Inward
p. Outward
q. Forward
r. backward

What is the direction of the friction force if the wind is blowing $20 \mathrm{mi} / \mathrm{hr}$ towards the NE
d. SE
e. SW
f. NW

NE
Friction always acts \qquad opposite \qquad relative to wind velocity.

Friction tends to make the wind blow faster/Slower .

Friction tends to indirectly increase/decrease the coriolis force.

The friction force indirectly tends to make the wind blow in the direction tilted towards / away from the pressure gradient force.

For the Figure below does the wind flow pattern match circulation for a NH Low, NH High, SH Low, or SH High?

